How harmful is Chuna and Paan

Handbook of Psychoactive Substances pp 1-24 | Cite as

  • Norbert Thürauf
Living reference work entry
First Online:
Part of the Springer Reference Psychology book series (SRP)


Acetylcholine mediates the transmission of excitation between nerve and muscle at the neuromuscular endplate in the striated muscles, and in the vegetative nervous system it is a transmitter from the first to the second neuron, in the parasympathetic nerve from the second neuron to the end organ. The development of substances with cholinergic effects but longer half-lives than acetylcholine led to the class of parasympathomimetics in medicine. The pharmacological inhibition of esterases, which inhibit the breakdown of acetylcholine, indirectly enables an increase in the effect of acetylcholine (indirect sympathomimetics).

Acetylcholine is an important messenger substance in the central nervous system. Centrally active acetylcholine esterase inhibitors are used as therapeutic agents in Alzheimer's disease.

Among the three most important luxury and addictive substances worldwide - alcohol, nicotine and betel - nicotine and betel also attack central nicotinic acetylcholine receptors, which is strongly associated with the development of addiction.


Cholinergics Parasympathomimetics Tobacco Nicotine Betel Addiction Neural Acetylcholine Receptors
This is a preview of subscription content, log in to check access.


  1. Antuono, P.G. (1995). Effectiveness and safety of velnacrine for the treatment of Alzheimer's disease. A double-blind, placebo-controlled study. Mentane Study Group. Archives of Internal Medicine, 155, 1766–1772. CrossRefPubMedGoogle Scholar
  2. Arjungi, K.N. (1976). Areca nut: A review. Drug research, 26, 951-956. PubMed Google Scholar
  3. AWMF. (2015). S3 guideline "Screening, diagnosis and treatment of harmful and dependent tobacco consumption". AWMF register no. 076–006, AWMF online. Accessed on March 23, 2017.
  4. Batra, A., Petersen, K. U., Hoch, E., Mann, K., Kröger, C., Schweizer, C., et al. (2016). Psychotherapy and pharmacotherapy for harmful tobacco use and tobacco addiction. Neurologist, 87(1), 35–45. CrossRefPubMedGoogle Scholar
  5. Benowitz, N.L. (1996). Pharmacology of nicotine: Addiction and therapeutics. Annual Review of Pharmacology and Toxicology, 36, 597–613. CrossRefPubMedGoogle Scholar
  6. Bhat, R., Ganachari, S., Deshpande, R., Ravindra, G., & Venkataraman, A. (2012). Rapid biosynthesis of silver nanoparticles using Areca nut (Areca catechu) extract under microwave assistance. Journal of Cluster Science, 24, 107. CrossRefGoogle Scholar
  7. Brown, J.H., & Taylor, P. (1996). Muscarinic receptor agonists and antagonists. In J. G. Hardman (ed.), Goodman & Gilman’s the pharmacological basis of therapeutics (Pp. 141-160). New York: McGraw-Hill.Google Scholar
  8. Chiang, W.T., Yang, C.C., Deng, J.F., & Bullard, M. (1998). Cardiac arrhythmia and betel nut chewing - Is there a causal effect. Veterinary and Human Toxicology, 40, 287-289. PubMed Google Scholar
  9. Chu, N.S. (2002). Neurological aspects of areca and betel chewing. Addiction Biology, 7, 111–114. CrossRefPubMedGoogle Scholar
  10. Corrigall, W.A., Franklin, K.B., Coen, K.M., & Clarke, P.B. (1992). The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology, 107, 285-289. CrossRefPubMedGoogle Scholar
  11. Deng, J.F., Ger, J., Tsai, W.J., Kao, W.F., & Yang, C.C. (2001). Acute toxicities of betel nut: Rare but probably overlooked events. Journal of Toxicology. Clinical Toxicology, 39(4), 355-360. CrossRefPubMedGoogle Scholar
  12. Derek, G., Waller, A. G., & Renwick, K. H. (2009). Medical pharmacology and therapeutics. Philadelphia: Saunders Elsevier.Google Scholar
  13. DKFZ - German Cancer Research Center. (2009). Tobacco Atlas Germany 2009. Heidelberg: DKFZ. Accessed on March 23, 2017.
  14. Estler, C. J. (Eds.). (1995). Textbook for doctors, veterinarians, pharmacists and natural scientists. With 296 tables. Stuttgart / New York: Schattauer.Google Scholar
  15. Ezzati, M., & Lopez, A.D. (2003). Estimates of global mortality attributable to smoking in 2000. Lancet, 362, 847–852. CrossRefPubMedGoogle Scholar
  16. Fagerström, K. (2012). Determinants of tobacco use and renaming the FTND to the Fagerström test for cigarette dependence. Nicotine & Tobacco Research, 14, 75–78. CrossRefGoogle Scholar
  17. Fagerström, K. O., & Schneider, N. G. (1989). Measuring nicotine dependence: A review of the Fagerström tolerance questionnaire. Journal of Behavioral Medicine, Dec., 159–182. CrossRefPubMedGoogle Scholar
  18. Fetzner, A. (2015). The betel chewers: drug or luxury food? North Charleston: CreateSpace.Google Scholar
  19. Garg, A., Chaturvedi, P., & Gupta, P. C. (2014). A review of the systemic adverse effects of areca nut or betel nut. Indian Journal of Medical and Pediatric Oncology, 35(1), 3–9. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Giri, S., Idle, J. R., Chen, C., Zabriskie, T. M., Krausz, K. W., & Gonzalez, F. J. (2006). A metabolonomic approach to the metabolism of the areca nut alkaloids arecoline and arecaidins in the mouse. Chemical Research in Toxicology, 19, 818–827. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gorsline, J., Gupta, S.K., Dye, D., & Rolf, C.N. (1993). Steady-state pharmacokinetics and dose relationship of nicotine delivered from Nicoderm (nicotine transdermal system). Journal of Clinical Pharmacology, 33, 161–168. CrossRefPubMedGoogle Scholar
  22. Guh, J. Y., Chen, H. C., Tsai, J. F., & Chuang, L. Y. (2007). Betel-quid use is associated with heart disease in women. The American Journal of Clinical Nutrition, 85, 1229-1235. PubMedGoogle Scholar
  23. Heatherton, T.F., Kozlowski, L.T., Frecker, R.C., & Fagerstrom, K.O. (1991). The fagerstrom test for nicotine dependence: A revision of the fagerstrom tolerance questionnaire. British Journal of Addiction to Alcohol & Other Drugs, 86, 1119–1127. CrossRefGoogle Scholar
  24. Hoffmann, D., & Wynder, E.L. (1994). Active and passive smoking. In H. Marquardt & S. G. Schäfer (eds.), Textbook of toxicology (Pp. 589-605). Mannheim / Leipzig / Vienna / Zurich: Wissenschaftsverlag.Google Scholar
  25. Hunt, S.P., & Schmidt, J. (1978). The electron microscopic autoradiographic localization of alpha-bungarotoxin binding sites within the central nervous system of the rat. Brain Research, 142, 152–159. CrossRefPubMedGoogle Scholar
  26. IARC - International Agency for Research on Cancer. (2004). IARC monographs on the evaluation of the carcinogenic risks to humans. Tobacco smoke and involuntary smoking. Lyon: IARC.Google Scholar
  27. Javed, F., Bello Correra, F. O., Chotai, M., Tappuni, A. R., & Almas, K. (2010). Systemic conditions associated with areca nut usage: A literature review. Scandinavian Journal of Public Health, 38, 838–844. CrossRefPubMedGoogle Scholar
  28. Johnston, G.A.R. (1975). Betel nut constituents as inhibitors of GABA uptake. Nature, 258, 627. CrossRefPubMedGoogle Scholar
  29. Columbus, C. (1992). The log of Christopher Columbus. Entry from 10/12/1492. Frankfurt a. M .: Insel Verlag.Google Scholar
  30. Kroll, L. E., & Lampert, T. (2012). Regionalization of health indicators. Results from the GEDA Study 2009. Federal Health Gazette, Health Research, Health Protection, 55 (1), 129-140. CrossRefPubMedGoogle Scholar
  31. Lampert, T. (2010). Social determinants of tobacco consumption among adults in Germany. Federal Health Gazette, Health Research, Health Protection, 53(2/3), 108–116. CrossRefPubMedGoogle Scholar
  32. Lampert, T. (2011). Smoking - Current Developments in Adults. GBE compact, 2(4). Robert Koch Institute. Accessed on 03/23/2017.
  33. Levin, E. D., Wilson, W., Rose, J. E., & McEvoy, J. (1996). Nicotine-haloperidol interactions and cognitive performance in schizophrenics. Neuropsychopharmacology, Dec., 429-436. CrossRefPubMedGoogle Scholar
  34. Loewi, O. (1921). About the humoral transferability of the cardiac nerve effects. I. Communication. Pflüger's Archives for the Entire Physiology, 189, 239–242. CrossRefGoogle Scholar
  35. Mansvelder, H.D., & McGehee, D.S. (2000). Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron, 27, 349–357. CrossRefPubMedGoogle Scholar
  36. Mayer, S. (2003). From soldier's herb to folk drug. Time online. Accessed on March 23, 2017.
  37. McGehee, D.S., Heath, M.J., Gelber, S., Devay, P., & Role, L.W. (1995). Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science, 269, 1692–1696. CrossRefPubMedGoogle Scholar
  38. Mons, U. (2011). Tobacco-attributable mortality in Germany and in the German federal states - calculations with data from the microcensus and the cause of death statistics. Healthcare, 73, 238–246. CrossRefPubMedGoogle Scholar
  39. Neubauer, S., Welte, R., Beiche, A., Koenig, H. H., Buesch, K., & Leidl, R. (2006). Mortality, morbidity and costs attributable to smoking in Germany: Update and a 10-year comparison. Tobacco Control, 15, 464–471. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nieschulz, O. (1970). Pharmacology of the active substances in betel. 3. Experiments with arecaidine. Drug research, 20, 218-229. PubMedGoogle Scholar
  41. Papke, R. L., Horenstein, N. A., & Stokes, C. (2015). Nicotinic activity of arecoline, the psychoactive element of "betel nuts", suggests a basis for habitual use and anti-inflammatory activity. PLoS One, e0140907. doi: 10.1371 / journal.pone.0140907.Google Scholar
  42. Picciotto, M. R., Zoli, M., Rimondini, R., Lena, C., Marubio, L. M., Pich, E. M., et al. (1998). Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature, 391, 173–177. CrossRefPubMedGoogle Scholar
  43. Pönicke, H., & Jasmatzi, G. (1974). Historical commission at the Bavarian Academy of Sciences. In J. Huppmann (ed.), New German biography. Volume 10 (P. 360). Berlin: Duncker & Humblot.Google Scholar
  44. Pontieri, F. E., Tanda, G., Orzi, F., & Di Chiara, G. (1996). Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature, 382, 255-257. CrossRefPubMedGoogle Scholar
  45. Rainer, M. (2014). Cholinesterase inhibitors for the treatment of Alzheimer's disease: Are there clinically relevant differences? Journal of Neurology, Neurosurgery and Psychiatry, 15(4), 224-229. Google Scholar
  46. Reavill, C., Waters, J.A., Stolerman, I.P., & Garcha, H.S. (1990). Behavioral effects of the nicotinic agonists N- (3-pyridylmethyl) pyrrolidine and isoarecolone in rats. Psychopharmacology, 102, 521-528. CrossRefPubMedGoogle Scholar
  47. Scheline, R. R. (1978). Mammalian metabolism of plant xenobiotics. London: Academic.Google Scholar
  48. Schilstrom, B., Svensson, H. M., Svensson, T. H., & Nomikos, G. G. (1998). Nicotine and food induced dopamine release in the nucleus accumbens of the rat: Putative role of alpha7 nicotinic receptors in the ventral tegmental area. Neuroscience, 85, 1005-1009. CrossRefPubMedGoogle Scholar
  49. Schneck, H. J., Tempel, G., & Ruprecht, J. (1989). On the pharmacology of physostigmine. In G. Tempel (ed.), Physostigmine and post-narcotic vigilance (Pp. 1-9). Stuttgart / New York: Gustav Fischer Verlag.Google Scholar
  50. Schneider, E. (1986). Betel - a popular luxury food in South Asia. Pharmacy in Our Time, 15(6), 161-166. CrossRefPubMedGoogle Scholar
  51. Schulze, A., & Lampert, T. (2006) Federal Health Survey: Social differences in smoking behavior and in passive smoke exposure in Germany. Contributions to federal health reporting. Berlin: RKI. Accessed on March 23, 2017.
  52. Scott, L.J., & Goa, K.L. (2000). Galantamine: A review of its use in Alzheimer's disease. Drugs, 60, 1095–1122. CrossRefPubMedGoogle Scholar
  53. Sekkadde, K.K., & Saweri, A. (1994). Betel nut chewing causes bronchoconstriction in some asthma patients. Papua and New Guinea Medical Journal, 37, 90-99. Google Scholar
  54. Senn, M., Baiwog, F., & Winmai, J. (2009). Betel nut chewing during pregnancy, Madang province, Papua New Guinea. Drug and Alcohol Dependence, 105, 126-131. CrossRefPubMedGoogle Scholar
  55. Strickland, S. S., & Duffield, A. E. (1997). Anthropometric status and resting metabolic rate in users of the areca nut and smokers of tobacco in rural Sarawak. Annals of Human Biology, 24, 453–474. CrossRefPubMedGoogle Scholar
  56. Strickland, S. S., Veena, G. V., Houghton, P. J., Stanford, S. C., & Kurpad, A. V. (2003). Areca nut, energy metabolism and hunger in Asian Men. Annals of Human Biology, Jan., 26–52. CrossRefPubMedGoogle Scholar
  57. Szinicz, L., & Baskin, S. I. (2004). Chemical and biological warfare agents. In H. Marquardt (ed.), Textbook of toxicology (Pp. 865-895). Stuttgart: Wissenschaftliche Verlagsgesellschaft.Google Scholar
  58. Taylor, P. (1996). Anticholinesterase agents. In J. G. Hardman (ed.), Goodman & Gilman’s the pharmacological basis of therapeutics (Pp. 160-176). New York: McGraw-Hill.Google Scholar
  59. Taylor, R.H., Al-Jarad, N., John, L.M., Barnes, N.C., & Conroy, D.M. (1992). Betel nut chewing and asthma. Lancet, 339, 1134–1136. CrossRefPubMedGoogle Scholar
  60. Thürauf, N., Kaegler, M., Dietz, R., Barocka, A., & Kobal, G. (1999). Dose-dependent stereoselective activation of the trigeminal sensory system by nicotine in man. Psychopharmacology, 142, 236–243. CrossRefGoogle Scholar
  61. Thürauf, N., Renner, B., Kaegler, M., Barocka, A., & Kobal, G. (2000). Specific sensory detection, discrimination and hedonic estimation of nicotine enantiomers in smokers and non-smokers - Limitations in replacing the sensory components of nicotine? Journal of Clinical Psychopharmacology, Jan.(4), 472–478. CrossRefGoogle Scholar
  62. Thürauf, N., Markovic, K., Braun, G., Bleich, S., Reulbach, U., Kornhuber, J., et al. (2006). The influence of mecamylamine on trigeminal and olfactory chemoreception of nicotine. Neuropsychopharmacology, Dec.(2), 450–461. CrossRefGoogle Scholar
  63. Tsai, W.C., Wu, M.T., Wang, G.J., Lee, K.T., Lee, C.H., Lu, Y.H., et al. (2012). Chewing areca nut increases the risk of coronary artery disease in Taiwanese men: A case control study. BMC Public Health, Dec., 162-168. CrossRefPubMedPubMedCentralGoogle Scholar
  64. United States Public Health Service. (1964). Smoking and health: Report of the advisory committee to the surgeon general of the public health service. Washington, DC: US ​​Department of Health, Education, and Welfare.Google Scholar
  65. USDHHS - U.S. Department of Health and Human Services. (2006). The health consequences of involuntary exposure to tobacco smoke: A report of the Surgeon General. Atlanta: USDHHS. Accessed on 03/23/2017.
  66. Villégier, A.S., Salomon, L., Granon, S., Changeux, J.P., Belluzzi, J.D., Leslie, F.M., et al. (2006). Monoamine oxidase inhibitors allow locomotor and rewarding responses to nicotine. Neuropsychopharmacology, Dec., 1704–1713. CrossRefPubMedGoogle Scholar
  67. Vree, T. B., Waitzinger, J., Hammermaier, A., & Radhofer-Welte, S. (1999). Absolute bioavailability, pharmacokinetics, renal and biliary clearance of distigmine after a single oral dose in comparison to i.v. administration of 14C-distigmine-bromide in healthy volunteers. International Journal of Clinical Pharmacology and Therapeutics, 37, 393-403. PubMedGoogle Scholar
  68. Warburton, D.M. (1992). Nicotine as a cognitive enhancer. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 16, 181–191. CrossRefPubMedGoogle Scholar
  69. Winstock, A.R., Trivedy, C.R., Warnakulasuriya, K.A., & Peters, T.J. (2000). A dependency syndrome related to areca nut use: Some medical and psychological aspects among areca nut users in the Gujarat community in the UK. Addiction Biology, 5, 173-179. CrossRefPubMedGoogle Scholar
  70. Wolfram, W. (Ed.). (2011). Intensive care medicine practice concrete, compact, interdisciplinary. Berlin / Heidelberg: Springer.Google Scholar
  71. Wu, P.F., Chiang, T.A., Chen, M.T., Lee, C.P., Chen, P.H., Ko, A.M., et al. (2010). A characterization of the antioxidant enzyme activity and reproductive toxicity in male rats following sub-chronic exposure to areca nut extracts. Journal of Hazardous Materials, 178, 541-546. CrossRefPubMedGoogle Scholar
  72. Yamamoto, I. (1999). Nicotine to nicotinoids, 1962 to 1997. In I. Yamamoto & J. E. Casida (Eds.), Nicotinoid insecticides and the nicotinic acetylcholine receptor (Pp. 3-27). Tokyo / New York: Springer.CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.KopfklinikenUniversitätsklinikum ErlangenErlangenGermany